In addition to Weibo, there is also WeChat
Please pay attention
WeChat public account
Shulou
2025-04-05 Update From: SLTechnology News&Howtos shulou NAV: SLTechnology News&Howtos > Internet Technology >
Share
Shulou(Shulou.com)05/31 Report--
This article introduces the relevant knowledge of "how to realize dichotomy in C++". In the operation process of actual cases, many people will encounter such difficulties. Next, let Xiaobian lead you to learn how to deal with these situations! I hope you can read carefully and learn something!
Dichotomy is an algorithm that continuously shrinks intervals to find target values in a sorted sequence (array, linked list, etc.). Here we will explore some details of dichotomy use and common scenarios:
Find a number; find the left boundary; find the right boundary.
int binarySearch(vector& numbers, int target){ int left=0, right=nums.size(); while(left
< right) { int mid=(left+right)/2; if(nums[mid] == target){ // 条件一:中间的值与目标值相同 } else if(nums[mid] >target){ //Condition 2: The middle value is greater than the target value } else if(nums[mid]
< target){ // 条件三:中间的值小于目标值 } } return -1; } 首先,我们先来分析一下右边界 right 的初始值: 当 right=nums.size() 时,初始化的区间就变成了 ([0, right-1]),即 ([0,right)); 当right=nums.size()-1 时,初始化的区间就变成了 ([0, right])。 在第一种情况下,当 nums[mid] >If target, the interval needs to be contracted to the left, i.e. right=mid. The logic of this approach is: since mid is greater than target, and the search interval is "left closed and right open," when right=mid, the new search interval becomes ([0, mid)), so that no value is missed. Similarly, when nums[mid]
< target 时,需要将区间向右收缩,即 left = mid+1,因为在 "左闭右开" 的区间下,新的查找区间变成 ([mid+1, right)) 才不会漏掉值。当目标值不在序列中时,需要将 while 的条件写成 while(left < right) 而不是写成 while(left target 时,需要将区间向左收缩,即 right=mid-1; 当 nums[mid] < target 时,需要将区间向右收缩,即 left = mid+1; 当目标值不在序列中时,需要将 while 的条件写成 while(left target){ right = mid; // 中间的值大于目标值,向左收缩区间 } else if(nums[mid] < target){ left = mid+1;// 中间的值小于目标值,向右收缩区间 } } return -1; // 当没有找到,直接返回-1}三、二分法查找目标值的左右边界 上述代码只能从序列中查找一个目标值并返回位置,当一个序列中目标值不止一个时,我们需要找到目标值最左边的位置和最右边的位置,这时候二分法需要进行改写: // 查找目标值的左边界int binarySearch(vector& nums, int target){ int left=0, right=nums.size(); while(left < right) { int mid=(left+right)/2; if(nums[mid] == target){ right = mid; // 查询到目标值不进行返回,而是收缩区间继续查找 } else if(nums[mid] >target){ right = mid; //The middle value is greater than the target value, shrinking the interval to the left } else if(nums[mid]
< target){ left = mid+1;// 中间的值小于目标值,向右收缩区间 } } return left; } 根据上述代码,可以发现如果查找目标值的左边界,在满足 nums[mid] == target 时,需要缩小搜索区间的上界 right,在区间 ([left, mid]) 中继续搜索,直到搜索完毕 left==right。此时 left=right=左边界。 查找右边界的做法与左边界类似: // 查找目标值的左边界int binarySearch(vector& nums, int target){ int left=0, right=nums.size(); while(left < right) { int mid=(left+right)/2; if(nums[mid] == target){ left = mid+1; // 查询到目标值不进行返回,而是收缩区间继续查找 } else if(nums[mid] >target){ right = mid; //The middle value is greater than the target value, shrinking the interval to the left } else if(nums[mid] < target){ left = mid+1;//middle value is less than target value, contraction interval to right } } return left-1; }
Note that the criterion here is changed to left = mid+1 when nums[mid] == target. Because the search interval is "left closed right open," so when looking for the left boundary can make right=mid, when looking for the right boundary must also be left=mid+1, otherwise the program will always stop inside the loop and can not jump out of the loop.
"C++ how to achieve dichotomy" content is introduced here, thank you for reading. If you want to know more about industry-related knowledge, you can pay attention to the website. Xiaobian will output more high-quality practical articles for everyone!
Welcome to subscribe "Shulou Technology Information " to get latest news, interesting things and hot topics in the IT industry, and controls the hottest and latest Internet news, technology news and IT industry trends.
Views: 0
*The comments in the above article only represent the author's personal views and do not represent the views and positions of this website. If you have more insights, please feel free to contribute and share.
Continue with the installation of the previous hadoop.First, install zookooper1. Decompress zookoope
"Every 5-10 years, there's a rare product, a really special, very unusual product that's the most un
© 2024 shulou.com SLNews company. All rights reserved.