Network Security Internet Technology Development Database Servers Mobile Phone Android Software Apple Software Computer Software News IT Information

In addition to Weibo, there is also WeChat

Please pay attention

WeChat public account

Shulou

Example Analysis of adaboost algorithm in python Machine Learning Sklearn

2025-04-11 Update From: SLTechnology News&Howtos shulou NAV: SLTechnology News&Howtos > Development >

Share

Shulou(Shulou.com)06/01 Report--

This article mainly shows you "Python machine learning Sklearn adaboost algorithm example analysis", the content is simple and easy to understand, organized clearly, I hope to help you solve doubts, let Xiaobian lead you to study and learn "Python machine learning Sklearn adaboost algorithm example analysis" this article bar.

Pandas Batch Processing Physical Test Scores import numpy as npimport pandas as pdfrom pandas import Series, Dataimport Framematplotlib.pyplot as pltdata = pd.read_excel("/Users/zhucan/Desktop/18th Grade High Physical Test Scores Summary.xls")cond = data["Class"] != "class"data = data[cond] data.fillna(0,inplace=True)data.isnull().any() There is no empty data

Results:

Class False

Gender False

Name False

1000 m False

50 m False

Long jump False

Forward Bend False

False

Vital capacity False

Height False

Weight False

dtype: bool

data.head()

#1000 m score has string with intdef convert(x): if isinstance(x,str): minute,second = x.split("'") int(minute) minute = int(minute) second = int(second) return minute + second/100.0 else: return xdata["1000m"] = data["1000m"].map(convert)

score = pd.read_excel("/Users/zhucan/Desktop/Body Side Scores.xls",header=[0,1])score

def convert(item): m,s = item.strip('"').split("'") m,s =int(m),int(s) return m+s/100.0score.iloc[:,-4] = score.iloc[:,-4].map(convert) def convert(item): m,s = item.strip('"').split("'") m,s =int(m),int(s) return m+s/100.0 score.iloc[:,-2] = score.iloc[:,-2].map(convert)score

data.columns = ['class',' gender','name',' male 1000','male 50m run',' long jump','forward flex',' pull-up','vital capacity',' height','weight'] data["male 50m run"] = data["male 50m run"].astype(np.float)for col in ["male 1000","male 50m run"]: #Criteria for obtaining results s = score[col] def convert(x): for i in range(len(s)): if xs["score"].iloc[-1]: return 0 #Running too slow elif (x>s["score"].iloc[i-1]) and (xs["score"].iloc[i]: return s["fraction"].iloc[i] return 0 data[col+"score"] = data[col].map(convert)

data.columns

Results:

Index(['class',' gender','name',' male 1000','male 50m run',' long jump','forward flex',' pull-up','vital capacity',' height', 'weight',' men's 1000 performance','men's 50-meter running performance',' long jump performance','body forward bend performance',' pull up performance','vital capacity performance'], dtype='object')#According to the index order, go to data values cols = [' class','gender',' name','male 1000',' male 1000','male 50m run',' male 50m run','long jump',' long jump','body flexion','body flexion','pull-up',' vital capacity ',' vital capacity ',' height','weight'] data[cols]

#Calculate BMIdata["BMI"] = data["Weight"]/data["Height"]def convert(x): if x>100: return x/100 else: return xdata["Height"] = data["Height"].map(convert)data["BMI"] = data["Weight"]/(data["Height"])**2def convert_bmi(x): if x >= 26.4: return 60 elif (x 23.3 and x = 16.5 and x

Welcome to subscribe "Shulou Technology Information " to get latest news, interesting things and hot topics in the IT industry, and controls the hottest and latest Internet news, technology news and IT industry trends.

Views: 0

*The comments in the above article only represent the author's personal views and do not represent the views and positions of this website. If you have more insights, please feel free to contribute and share.

Share To

Development

Wechat

© 2024 shulou.com SLNews company. All rights reserved.

12
Report