Network Security Internet Technology Development Database Servers Mobile Phone Android Software Apple Software Computer Software News IT Information

In addition to Weibo, there is also WeChat

Please pay attention

WeChat public account

Shulou

Python calculates KS value and draws KS curve

2025-04-04 Update From: SLTechnology News&Howtos shulou NAV: SLTechnology News&Howtos > Internet Technology >

Share

Shulou(Shulou.com)06/03 Report--

For more information on big data's analysis and modeling, please follow the official account "bigdatamodeling".

Python realizes KS curve. For related usage, please refer to the previous blog-R language to realize KS curve.

The code is as follows:

# PlotKS # # def PlotKS (preds, labels, n, asc): # preds is score: asc=1 # preds is prob: asc=0 pred = preds # predicted value bad = labels # take 1 as bad, 0 as good ksds = DataFrame ({'bad': bad) 'pred': pred}) ksds [' good'] = 1-ksds.bad if asc = = 1: ksds1 = ksds.sort_values (by= ['pred',' bad'], ascending= [True, True]) elif asc = = 0: ksds1 = ksds.sort_values (by= ['pred',' bad'], ascending= [False] True]) ksds1.index = range (len (ksds1.pred)) ksds1 ['cumsum_good1'] = 1.0*ksds1.good.cumsum () / sum (ksds1.good) ksds1 [' cumsum_bad1'] = 1.0*ksds1.bad.cumsum () / sum (ksds1.bad) if asc = = 1: ksds2 = ksds.sort_values (by= ['pred',' bad'], ascending= [True] False]) elif asc = = 0: ksds2 = ksds.sort_values (by= ['pred',' bad'], ascending= [False] False]) ksds2.index = range (len (ksds2.pred)) ksds2 ['cumsum_good2'] = 1.0*ksds2.good.cumsum () / sum (ksds2.good) ksds2 [' cumsum_bad2'] = 1.0*ksds2.bad.cumsum () / sum (ksds2.bad) # ksds1 ksds2-> average ksds = ksds1 [['cumsum_good1'] 'cumsum_bad1']] ksds [' cumsum_good2'] = ksds2 ['cumsum_good2'] ksds [' cumsum_bad2'] = ksds2 ['cumsum_bad2'] ksds [' cumsum_good'] = (ksds ['cumsum_good1'] + ksds [' cumsum_good2']) / 2 ksds ['cumsum_bad'] = (ksds [' cumsum_bad1'] + ksds ['cumsum_bad2']) / 2 # ks ksds [' ks'] = ksds ['cumsum_bad']-ksds [' cumsum_good'] ksds ['tile0'] = range (1 Len (ksds.ks) + 1) ksds ['tile'] = 1.0*ksds [' tile0'] / len (ksds ['tile0']) qe = list (np.arange (0,1) 1.0) qe.append (1) qe = qe [1:] ks_index = Series (ksds.index) ks_index = ks_index.quantile (Q = qe) ks_index = np.ceil (ks_index) .astype (int) ks_index = list (ks_index) ksds = ksds. Locks _ index] ksds = ksds [['tile',' cumsum_good', 'cumsum_bad'] 'ks']] ksds0 = np.array ([[0,0,0,0]]) ksds = np.concatenate ([ksds0, ksds], axis=0) ksds = DataFrame (ksds, columns= [' tile', 'cumsum_good',' cumsum_bad', 'ks']) ks_value = ksds.ks.max () ks_pop = ksds.tile [ksds.ks.idxmax ()] print (' ks_value is'+ str (np.round (ks_value)) 4) +'at pop ='+ str (np.round (ks_pop, 4)) # chart plt.plot (ksds.tile, ksds.cumsum_good, label='cum_good', color='blue', linestyle='-', linewidth=2) plt.plot (ksds.tile, ksds.cumsum_bad, label='cum_bad', color='red', linestyle='-', linewidth=2) plt.plot (ksds.tile Ksds.ks, label='ks', color='green', linestyle='-', linewidth=2) plt.axvline (ks_pop, color='gray', linestyle='--') plt.axhline (ks_value, color='green', linestyle='--') plt.axhline (ksds.loc [ksds.ks.idxmax (), 'cumsum_good'], color='blue', linestyle='--') plt.axhline (ksds.loc [ksds.ks.idxmax () 'cumsum_bad'], color='red', linestyle='--') plt.title (' KS=%s'% np.round (ks_value, 4) +'at Pop=%s'% np.round (ks_pop, 4), fontsize=15) return ksds### over

The effect of drawing is as follows:

Welcome to subscribe "Shulou Technology Information " to get latest news, interesting things and hot topics in the IT industry, and controls the hottest and latest Internet news, technology news and IT industry trends.

Views: 0

*The comments in the above article only represent the author's personal views and do not represent the views and positions of this website. If you have more insights, please feel free to contribute and share.

Share To

Internet Technology

Wechat

© 2024 shulou.com SLNews company. All rights reserved.

12
Report