In addition to Weibo, there is also WeChat
Please pay attention
WeChat public account
Shulou
2025-02-14 Update From: SLTechnology News&Howtos shulou NAV: SLTechnology News&Howtos > Development >
Share
Shulou(Shulou.com)06/02 Report--
In this issue, the editor will bring you about how the multi-tier index in MySQL data optimization is like. The article is rich in content and analyzes and describes for you from a professional point of view. I hope you can get something after reading this article.
1. Multi-tier index
1. Create
Environment: Jupyter
Import numpy as npimport pandas as pda=pd.DataFrame (size= (4P4)), index= [['first half', 'first half', 'second half', 'second half'], ['first quarter', 'second quarter', 'third quarter', 'fourth quarter'], columns= [['vegetables', 'vegetables', 'meat'] 'meat'], ['carrots', 'cabbage', 'beef', 'pork']) display (a)
two。 Set the name of the index
Import numpy as npimport pandas as pda=pd.DataFrame (size= (4P4)), index= [['first half', 'first half', 'second half', 'second half'], ['first quarter', 'second quarter', 'third quarter', 'fourth quarter'], columns= [['vegetables', 'vegetables', 'meat'] 'meat'], ['carrots', 'cabbage', 'beef', 'pork']) a.index.names= ['year', 'quarter'] a.columns.namesame = ['big category', 'subclass'] display (a)
3.from_arrays ()-from_tuples ()
Import numpy as npimport pandas as pdindex=pd.MultiIndex.from_arrays (['first half', 'first half', 'second half'), ['first quarter', 'second quarter', 'third quarter', 'fourth quarter']) columns=pd.MultiIndex.from_tuples ([('vegetables', 'carrots'), ('vegetables', 'cabbage'), ('meat', 'beef'), ('meat' ]) a=pd.DataFrame (np.random.random (size= (4)), index=index,columns=columns) display (a)
4. Cartesian product mode
From_product () has more limitations.
Import pandas as pdindex = pd.MultiIndex.from_product ([['first half', 'second half'], ['vegetables', 'meat']) a=pd.DataFrame (np.random.random (size= (4Power4)), index=index) display (a)
Second, multi-tier index operation
1.Series
Import pandas as pda=pd.Series, index= [['a''], ['a'') print ('-') print (a.loc ['a']) print ('-') print (a.loc ['a'') 'c'])
Import pandas as pda=pd.Series ([1pyrum 2pyrm 3pyrm 4], index= ['axiajukkyo], [' cedronomy dcurries']. 'f']) print (a) print ('-') print (a.iloc [0]) print ('-') print (a.loc ['a') print ('-') print (a.iloc [0:2])
2.DataFrame
Import numpy as npimport pandas as pda=pd.DataFrame (size= (4P4)), index= [['first half', 'first half', 'second half', 'second half'], ['first quarter', 'second quarter', 'third quarter', 'fourth quarter'], columns= [['vegetables', 'vegetables', 'meat'] 'meat'], ['carrots', 'cabbage', 'beef', 'pork']) print (a) print ('-') print (a.loc ['first half', 'second quarter]) print (' -') print (a.iloc [0])
3. Swap index
Swaplevel ()
Import numpy as npimport pandas as pda=pd.DataFrame (size= (4P4)), index= [['2021', '2021', '2021', '2022'], ['first quarter', 'second quarter', 'third quarter', 'fourth quarter'], columns= [['vegetables', 'vegetables', 'meat', 'meat'] ['carrots', 'cabbage', 'beef', 'pork']) a.index.names= ['year', 'quarter'] print (a) print ('-') print (a.swaplevel ('year', 'quarter'))
4. Index sort
Sort_index ()
Level: specifies which layer to sort by, and defaults to the most layer
Inplace: whether to modify the original data. Default is False
Import numpy as npimport pandas as pda=pd.DataFrame (np.random.random (size= (4P4)), index= [['2021', '2021', '2021,' 2022, '2022], [1, 3, 10, 2, 5], columns= [[' vegetables', 'vegetables', 'meat', 'meat'], ['carrots', 'cabbage', 'beef' ]) a.index.namespace = ['year', 'quarter'] print (a) print ('-') print (a.sort_index) print ('-') print (a.sort_index (level=1))
5. Index stack
Stack ()
Converts columns at the specified level to rows
Import numpy as npimport pandas as pda=pd.DataFrame (np.random.random (size= (4P4)), index= [['2021', '2021', '2021,' 2022, '2022], [1, 3, 2, 5], columns= [[' vegetables', 'vegetables', 'meat', 'meat'], ['carrots', 'carrots', 'beef' ]) print (a) print ('-') print (a.stack (0)) print ('-') print (a.stack (- 1))
6. Unstacking
Unstack ()
Converts rows at the specified level to columns
Fill_value: specifies the padding value.
Import numpy as npimport pandas as pda=pd.DataFrame (np.random.random (size= (4P4)), index= [['2021', '2021', '2021,' 2022, '2022], [1, 3, 2, 5], columns= [[' vegetables', 'vegetables', 'meat', 'meat'], ['carrots', 'carrots', 'beef' ]) print (a) print ('-') a=a.stack (0) print (a) print ('-') print (a.unstack (- 1))
Import numpy as npimport pandas as pda=pd.DataFrame (np.random.random (size= (4P4)), index= [['2021', '2021', '2021,' 2022, '2022], [1, 3, 2, 5], columns= [[' vegetables', 'vegetables', 'meat', 'meat'], ['carrots', 'carrots', 'beef' 'beef']) print (a) print ('-') a=a.stack (0) print (a) print ('-') print (a.unstack)
This is how the multi-tier index in the MySQL data optimization shared by the editor is like. If you happen to have similar doubts, you might as well refer to the above analysis to understand. If you want to know more about it, you are welcome to follow the industry information channel.
Welcome to subscribe "Shulou Technology Information " to get latest news, interesting things and hot topics in the IT industry, and controls the hottest and latest Internet news, technology news and IT industry trends.
Views: 0
*The comments in the above article only represent the author's personal views and do not represent the views and positions of this website. If you have more insights, please feel free to contribute and share.
Continue with the installation of the previous hadoop.First, install zookooper1. Decompress zookoope
"Every 5-10 years, there's a rare product, a really special, very unusual product that's the most un
© 2024 shulou.com SLNews company. All rights reserved.