In addition to Weibo, there is also WeChat
Please pay attention
WeChat public account
Shulou
2025-09-18 Update From: SLTechnology News&Howtos shulou NAV: SLTechnology News&Howtos > Development >
Share
Shulou(Shulou.com)06/03 Report--
This article mainly introduces PyTorch basic operation example analysis, the article is very detailed, has a certain reference value, interested friends must read!
create data
torch.empty()
Create an empty tensor matrix.
Format:
torch.empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) → Tensor
Parameters:
size: The shape of the generator matrix, required
dtype: Data type, default is None
Examples:
#Create a matrix a = torch.empty(2,2)print(a)#Create a matrix b = torch.empty(3,3)print(b) of shape [3,3]
Output:
tensor([[0., 0.],
[0., 0.]])
tensor([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
torch.zeros()
Create a matrix of all zeros.
Format:
torch.zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
Parameters:
size: The shape of the generator matrix, required
dtype: Data type, default is None
Examples:
#Create an array of all zeros of shape [2,2] a = torch.zeros([2,2], dtype= torch. float32)print(a)#Create an array of all zeros of shape [3,3] b = torch.zeros([3,3], dtype= torch. float32)print(b)
Output:
tensor([[0., 0.],
[0., 0.]])
tensor([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
torch.ones()
Create an all-one matrix.
Format:
torch.ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
Parameters:
size: The shape of the generator matrix, required
dtype: Data type, default is None
Examples:
#Create an all-one array of shape [2,2] a = torch.ones([2,2], dtype= torch. float32)print(a)#Create an all-one array of shape [3,3] b = torch.ones([3,3], dtype= torch. float32)print(b)
Output:
tensor([[1., 1.],
[1., 1.]])
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])
torch.tensor()
Create tensors from data.
Format:
torch.tensor(data, *, dtype=None, device=None, requires_grad=False, pin_memory=False) → Tensor
Parameters:
data: data (array, tuple, ndarray, scalar)
dtype: Data type, default is None
Examples:
#Create tensor from data array = np.arange(1, 10).reshape(3, 3)print(array)print(type(array))tensor = torch.tensor(array)print(tensor) print(type(tensor))
Output:
[[1 2 3]
[4 5 6]
[7 8 9]]
tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]], dtype=torch.int32)
torch.rand()
Create a tensor matrix of random numbers 0~1.
Format:
torch.rand(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
Parameters:
size: The shape of the generator matrix, required
dtype: data type, default is None
Examples:
#Create a random number matrix of shape [2, 2] rand = torch.rand(2, 2)print(rand)
Output:
tensor([[0.6209, 0.3424],
[0.3506, 0.7986]])
mathematical operations
torch.add()
Returns the added tensor.
Format:
torch.add(input, other, *, out=None) → Tensor
Examples:
#tensor addition input1 = torch.tensor([[1, 2], [3, 4]])print(input1) input2 = torch.tensor([[4, 3], [2, 1])print(input2)output = torch.add(input1, input2)print(output)
Output:
tensor([[1, 2],
[3, 4]])
tensor([[4, 3],
[2, 1]])
tensor([[5, 5],
[5, 5]])
Note: The tensor shapes must be consistent, otherwise an error will be reported.
torch.sub()
Returns the subtracted tensor.
Examples:
#tensor subtract input1 = torch.tensor([[1, 2], [3, 4]])print(input1) input2 = torch.tensor([[4, 3], [2, 1])print(input2)output = torch.sub(input1, input2)print(output)
Output:
tensor([[1, 2],
[3, 4]])
tensor([[4, 3],
[2, 1]])
tensor([[-3, -1],
[ 1, 3]])
torch.matmul()
Examples:
#tensor matrix multiplication input1 = torch.tensor([[1, 1, 1])print(input1) input2 = torch.tensor([[3], [3], [3])print(input2)output = torch.matmul(input1, input2)print(output)
Output:
tensor([[1, 1, 1]])
tensor([[3],
[3],
[3]])
tensor([[9]])
index operations
An index can help us quickly find specific information in a tensor.
Examples:
#simple index operations ones = torch.ones([3, 3])print(ones[: 2])print(ones[:, : 2])
Debug output:
tensor([[1., 1., 1.],
[1., 1., 1.]])
tensor([[1., 1.],
[1., 1.],
[1., 1.]])
That's all for "PyTorch Basic Operation Sample Analysis". Thanks for reading! Hope to share the content to help everyone, more relevant knowledge, welcome to pay attention to the industry information channel!
Welcome to subscribe "Shulou Technology Information " to get latest news, interesting things and hot topics in the IT industry, and controls the hottest and latest Internet news, technology news and IT industry trends.
Views: 0
*The comments in the above article only represent the author's personal views and do not represent the views and positions of this website. If you have more insights, please feel free to contribute and share.
The market share of Chrome browser on the desktop has exceeded 70%, and users are complaining about
The world's first 2nm mobile chip: Samsung Exynos 2600 is ready for mass production.According to a r
A US federal judge has ruled that Google can keep its Chrome browser, but it will be prohibited from
Continue with the installation of the previous hadoop.First, install zookooper1. Decompress zookoope
About us Contact us Product review car news thenatureplanet
More Form oMedia: AutoTimes. Bestcoffee. SL News. Jarebook. Coffee Hunters. Sundaily. Modezone. NNB. Coffee. Game News. FrontStreet. GGAMEN
© 2024 shulou.com SLNews company. All rights reserved.