Network Security Internet Technology Development Database Servers Mobile Phone Android Software Apple Software Computer Software News IT Information

In addition to Weibo, there is also WeChat

Please pay attention

WeChat public account

Shulou

Example Analysis of basic Operation of PyTorch

2025-01-15 Update From: SLTechnology News&Howtos shulou NAV: SLTechnology News&Howtos > Development >

Share

Shulou(Shulou.com)06/03 Report--

This article mainly introduces PyTorch basic operation example analysis, the article is very detailed, has a certain reference value, interested friends must read!

create data

torch.empty()

Create an empty tensor matrix.

Format:

torch.empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) → Tensor

Parameters:

size: The shape of the generator matrix, required

dtype: Data type, default is None

Examples:

#Create a matrix a = torch.empty(2,2)print(a)#Create a matrix b = torch.empty(3,3)print(b) of shape [3,3]

Output:

tensor([[0., 0.],

[0., 0.]])

tensor([[0., 0., 0.],

[0., 0., 0.],

[0., 0., 0.]])

torch.zeros()

Create a matrix of all zeros.

Format:

torch.zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

Parameters:

size: The shape of the generator matrix, required

dtype: Data type, default is None

Examples:

#Create an array of all zeros of shape [2,2] a = torch.zeros([2,2], dtype= torch. float32)print(a)#Create an array of all zeros of shape [3,3] b = torch.zeros([3,3], dtype= torch. float32)print(b)

Output:

tensor([[0., 0.],

[0., 0.]])

tensor([[0., 0., 0.],

[0., 0., 0.],

[0., 0., 0.]])

torch.ones()

Create an all-one matrix.

Format:

torch.ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

Parameters:

size: The shape of the generator matrix, required

dtype: Data type, default is None

Examples:

#Create an all-one array of shape [2,2] a = torch.ones([2,2], dtype= torch. float32)print(a)#Create an all-one array of shape [3,3] b = torch.ones([3,3], dtype= torch. float32)print(b)

Output:

tensor([[1., 1.],

[1., 1.]])

tensor([[1., 1., 1.],

[1., 1., 1.],

[1., 1., 1.]])

torch.tensor()

Create tensors from data.

Format:

torch.tensor(data, *, dtype=None, device=None, requires_grad=False, pin_memory=False) → Tensor

Parameters:

data: data (array, tuple, ndarray, scalar)

dtype: Data type, default is None

Examples:

#Create tensor from data array = np.arange(1, 10).reshape(3, 3)print(array)print(type(array))tensor = torch.tensor(array)print(tensor) print(type(tensor))

Output:

[[1 2 3]

[4 5 6]

[7 8 9]]

tensor([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]], dtype=torch.int32)

torch.rand()

Create a tensor matrix of random numbers 0~1.

Format:

torch.rand(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

Parameters:

size: The shape of the generator matrix, required

dtype: data type, default is None

Examples:

#Create a random number matrix of shape [2, 2] rand = torch.rand(2, 2)print(rand)

Output:

tensor([[0.6209, 0.3424],

[0.3506, 0.7986]])

mathematical operations

torch.add()

Returns the added tensor.

Format:

torch.add(input, other, *, out=None) → Tensor

Examples:

#tensor addition input1 = torch.tensor([[1, 2], [3, 4]])print(input1) input2 = torch.tensor([[4, 3], [2, 1])print(input2)output = torch.add(input1, input2)print(output)

Output:

tensor([[1, 2],

[3, 4]])

tensor([[4, 3],

[2, 1]])

tensor([[5, 5],

[5, 5]])

Note: The tensor shapes must be consistent, otherwise an error will be reported.

torch.sub()

Returns the subtracted tensor.

Examples:

#tensor subtract input1 = torch.tensor([[1, 2], [3, 4]])print(input1) input2 = torch.tensor([[4, 3], [2, 1])print(input2)output = torch.sub(input1, input2)print(output)

Output:

tensor([[1, 2],

[3, 4]])

tensor([[4, 3],

[2, 1]])

tensor([[-3, -1],

[ 1, 3]])

torch.matmul()

Examples:

#tensor matrix multiplication input1 = torch.tensor([[1, 1, 1])print(input1) input2 = torch.tensor([[3], [3], [3])print(input2)output = torch.matmul(input1, input2)print(output)

Output:

tensor([[1, 1, 1]])

tensor([[3],

[3],

[3]])

tensor([[9]])

index operations

An index can help us quickly find specific information in a tensor.

Examples:

#simple index operations ones = torch.ones([3, 3])print(ones[: 2])print(ones[:, : 2])

Debug output:

tensor([[1., 1., 1.],

[1., 1., 1.]])

tensor([[1., 1.],

[1., 1.],

[1., 1.]])

That's all for "PyTorch Basic Operation Sample Analysis". Thanks for reading! Hope to share the content to help everyone, more relevant knowledge, welcome to pay attention to the industry information channel!

Welcome to subscribe "Shulou Technology Information " to get latest news, interesting things and hot topics in the IT industry, and controls the hottest and latest Internet news, technology news and IT industry trends.

Views: 0

*The comments in the above article only represent the author's personal views and do not represent the views and positions of this website. If you have more insights, please feel free to contribute and share.

Share To

Development

Wechat

© 2024 shulou.com SLNews company. All rights reserved.

12
Report