Network Security Internet Technology Development Database Servers Mobile Phone Android Software Apple Software Computer Software News IT Information

In addition to Weibo, there is also WeChat

Please pay attention

WeChat public account

Shulou

Analysis of slow query caused by the use of PreparedStatement in PostgreSQL

2025-04-09 Update From: SLTechnology News&Howtos shulou NAV: SLTechnology News&Howtos > Network Security >

Share

Shulou(Shulou.com)06/01 Report--

Experimental environment:

DB is PostgreSQL version 8.2.15

JDK1.8

Test one

Use JDBC to query a SQL:

Public static void test1 (String url, Properties props) {String sql = "SELECT l.src_ip, l.location_id," + "SUM (l.us_bytes) as up_usage," + "SUM (l.ds_bytes) as down_usage "+" (SUM (l.us_bytes) + SUM (l.ds_bytes)) as total_usage "+" FROM unmapped_endpoint_location_hours l "+" where l.org_id = 195078 "+" AND date_time > = '2017-04-01 00 SUM 00.0' AND date_time

< '2017-04-08 00:00:00.0' " + "AND l.location_id in (2638,2640,2654 ) " + "GROUP BY l.src_ip, l.location_id "; Connection conn = null; Statement sta = null; try { System.out.println("Start query1:" ); long s_time = System.currentTimeMillis(); conn = DriverManager.getConnection(url, props); sta = conn.createStatement(); sta.execute(sql); System.out.println("Using Time: " + (System.currentTimeMillis() - s_time)); } catch (SQLException e) { e.printStackTrace(); } finally { if (conn != null) { try { conn.close(); } catch (SQLException e) { e.printStackTrace(); } } if (sta != null) { try { sta.close(); } catch (SQLException e) { e.printStackTrace(); } } } } 结果: Start query1: Using Time: 11519 ms 测试二 使用JDBC PreparedStatement 查询相同的SQL: public static void test2(String url, Properties props){ String sql2 = "SELECT l.src_ip, l.location_id, " + "SUM(l.us_bytes) as up_usage, " + "SUM(l.ds_bytes) as down_usage, " + "(SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage " + "FROM unmapped_endpoint_location_hours l " + "where l.org_id = ? " + "AND date_time >

=? AND date_time

< ? " + "AND l.location_id in (2638,2640,2654 ) " + "GROUP BY l.src_ip, l.location_id"; Connection conn = null; PreparedStatement preSta = null; try { System.out.println("Start query2:"); long s_time = System.currentTimeMillis(); conn = DriverManager.getConnection(url, props); preSta = conn.prepareStatement(sql2); preSta.setString(1, "195078"); preSta.setString(2, "2017-04-01 00:00:00.0"); preSta.setString(3, "2017-04-09 00:00:00.0"); preSta.executeQuery(); System.out.println("Using Time: " + (System.currentTimeMillis() - s_time)); } catch (SQLException e) { e.printStackTrace(); } finally { if (conn != null) { try { conn.close(); } catch (SQLException e) { e.printStackTrace(); } } if (preSta != null) { try { preSta.close(); } catch (SQLException e) { e.printStackTrace(); } } } } 结果: Start query2: Using Time: 143031 ms 相同的SQL,测试二和测试一结果为什么差别这么大? 测试一的SQL没有使用PreparedStatement 方式,直接给了原始的SQL。测试二的使用了PreparedStatement ,但是在set参数的时候用的都是String。 两者查询速度相差10倍,这是不是很奇怪? 现在来做另一个实验: 测试三 使用JDBC PreparedStatement 查询相同的SQL: public static void test3(String url, Properties props){ String sql2 = "SELECT l.src_ip, l.location_id, " + "SUM(l.us_bytes) as up_usage, " + "SUM(l.ds_bytes) as down_usage, " + "(SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage " + "FROM unmapped_endpoint_location_hours l " + "where l.org_id = ? " + "AND date_time >

=? AND date_time

< ? " + "AND l.location_id in (2638,2640,2654 ) " + "GROUP BY l.src_ip, l.location_id"; Connection conn = null; PreparedStatement preSta = null; try { System.out.println("Start query3:"); long s_time = System.currentTimeMillis(); conn = DriverManager.getConnection(url, props); preSta = conn.prepareStatement(sql2); int org_id = 195078; SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); TimeZone.setDefault(TimeZone.getTimeZone("UTC")); Date d1 = null; Date d2 = null; try { d1 = df.parse("2017-04-01 00:00:00"); d2 = df.parse("2017-04-09 00:00:00"); } catch (ParseException e1) { e1.printStackTrace(); } preSta.setInt(1, org_id); preSta.setTimestamp(2, new java.sql.Timestamp(d1.getTime())); preSta.setTimestamp(3, new java.sql.Timestamp(d2.getTime())); preSta.executeQuery(); System.out.println("Using Time: " + (System.currentTimeMillis() - s_time)); } catch (SQLException e) { e.printStackTrace(); } finally { if (conn != null) { try { conn.close(); } catch (SQLException e) { e.printStackTrace(); } } if (preSta != null) { try { preSta.close(); } catch (SQLException e) { e.printStackTrace(); } } } } 结果: Start query3: Using Time: 16245 ms 测试结果和测试一的结果差不多,为什么? 这次测试同样使用了PreparedStatement,但是在设置参数的时候指定了参数的类型。 explan analyze 查看explan dev=# explain analyze SELECT count(loc.name) AS totalNumdev-# FROM (SELECT t.src_ip, t.location_id, t.up_usage, t.down_usage, t.total_usagedev(# FROM (SELECT l.src_ip, l.location_id,dev(# SUM(l.us_bytes) as up_usage,dev(# SUM(l.ds_bytes) as down_usage,dev(# (SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usagedev(# FROM unmapped_endpoint_location_hours ldev(# where l.org_id = 195078dev(# AND date_time >

= '2017-04-11 00 AND date_time

< '2017-04-20 00:00:00.0'dev(# AND l.location_id in (2638,2640)dev(# GROUP BY l.src_ip, l.location_id ) tdev(# WHERE t.total_usage >

0) mdev-# LEFT OUTER JOIN locations loc on m.location_id = loc.id WHERE loc.org_id = 195078

Time: 15202.518 ms

Prepare Expalin:PREPARE test (int,text,text,int) asSELECT count (loc.name) AS totalNumFROM (SELECT t.src_ip, t.location_id, t.up_usage, t.down_usage, t.total_usage FROM (SELECT l.src_ip, l.location_id, SUM (l.us_bytes) as up_usage, SUM (l.ds_bytes) as down_usage (SUM (l.us_bytes) + SUM (l.ds_bytes)) as total_usage FROM unmapped_endpoint_location_hours l where l.org_id = $1 AND date_time > = $2 AND date_time

< $3 AND l.location_id in (2638,2640) GROUP BY l.src_ip, l.location_id ) tWHERE t.total_usage >

(0) mLEFT OUTER JOIN locations loc on m.location_id = loc.id WHERE loc.org_id = $4) explain analyze EXECUTE test (195078) (195078) (195078); dev=# EXECUTE test (195078)

Welcome to subscribe "Shulou Technology Information " to get latest news, interesting things and hot topics in the IT industry, and controls the hottest and latest Internet news, technology news and IT industry trends.

Views: 0

*The comments in the above article only represent the author's personal views and do not represent the views and positions of this website. If you have more insights, please feel free to contribute and share.

Share To

Network Security

Wechat

© 2024 shulou.com SLNews company. All rights reserved.

12
Report