Network Security Internet Technology Development Database Servers Mobile Phone Android Software Apple Software Computer Software News IT Information

In addition to Weibo, there is also WeChat

Please pay attention

WeChat public account

Shulou

Artificial intelligence tutorial: Spring Boot+OAuth2, a note to fix single sign-on!

2025-01-14 Update From: SLTechnology News&Howtos shulou NAV: SLTechnology News&Howtos > Internet Technology >

Share

Shulou(Shulou.com)06/02 Report--

Neural networks are deep…The following code is best run on GPUs

Environmental parameters: Keras == 2.1.2

Tensorflow = 1.4.0

import keras

from keras.datasets import cifar10

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

from keras.layers import Dense,Dropout,Flatten,Activation

from keras.layers import Conv2D,MaxPooling2D,ZeroPadding2D,GlobalMaxPooling2D

#Load Data Set

batch_size = 32

num_classes = 10

epochs = 1600

data_augmentation = True

(x_train,y_train),(x_test,y_test) = cifar10.load_data()

print('x_train shape:',x_train.shape)

print(x_train.shape[0],'train samples')

print(x_test.shape[0],'test samples')

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255

y_train =keras.utils.to_categorical(y_train,num_classes)

y_test =keras.utils.to_categorical(y_test,num_classes)

#Building a network

model = Sequential()

model.add(Conv2D(32, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(32, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(32, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(48, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(48, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Conv2D(80, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(80, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(80, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(80, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(80, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Conv2D(128, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(128, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(128, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(128, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(128, (3, 3), padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(GlobalMaxPooling2D())

model.add(Dropout(0.25))

model.add(Dense(500))

model.add(Activation('relu'))

model.add(Dropout(0.25))

model.add(Dense(num_classes))

model.add(Activation('softmax'))

model.summary()

#Model Compilation Training

opt = keras.optimizers.Adam(lr = 0.0001)

model.compile(loss='categorical_crossentropy',optimizer = opt,metrics = ['accuracy'])

print("---------train---------")

model.fit(x_train,y_train,epochs = 600,batch_size = 128,)

print("---------test---------")

loss,acc = model.evaluate(x_test,y_test)

print("loss=",loss)

print("accuracy=",acc)#Training method based on data enhancement

if not data_augmentation:

print('Not using data augmentation. ')

model.fit(x_train, y_train,

batch_size=batch_size,

epochs=epochs,

validation_data=(x_test, y_test),

shuffle=True, callbacks=[tbCallBack])

else:

print('Using real-time data augmentation. ')

datagen = ImageDataGenerator(

featurewise_center=False, # set input mean to 0 over the dataset

samplewise_center=False, # set each sample mean to 0

featurewise_std_normalization=False, # divide inputs by std of the dataset

samplewise_std_normalization=False, # divide each input by its std

zca_whitening=False, # apply ZCA whitening

rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180)

width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)

height_shift_range=0.2, # randomly shift images vertically (fraction of total height)

horizontal_flip=True, # randomly flip images

vertical_flip=False) # randomly flip images

datagen.fit(x_train)

model.fit_generator(datagen.flow(x_train,y_train,batch_size=batch_size),

steps_per_epoch=x_train.shape[0] // batch_size,

epochs=epochs,

validation_data=(x_test, y_test), callbacks=[tbCallBack])

Welcome to subscribe "Shulou Technology Information " to get latest news, interesting things and hot topics in the IT industry, and controls the hottest and latest Internet news, technology news and IT industry trends.

Views: 0

*The comments in the above article only represent the author's personal views and do not represent the views and positions of this website. If you have more insights, please feel free to contribute and share.

Share To

Internet Technology

Wechat

© 2024 shulou.com SLNews company. All rights reserved.

12
Report