In addition to Weibo, there is also WeChat
Please pay attention
WeChat public account
Shulou
2025-01-16 Update From: SLTechnology News&Howtos shulou NAV: SLTechnology News&Howtos > Internet Technology >
Share
Shulou(Shulou.com)06/01 Report--
This article introduces the relevant knowledge of "how to realize the attention mechanism of web". In the operation of actual cases, many people will encounter such a dilemma, so let the editor lead you to learn how to deal with these situations. I hope you can read it carefully and be able to achieve something!
Channel attention mechanism:
Import torchfrom torch import nnclass ChannelAttention (nn.Module): def _ init__ (self, in_planes, ratio=16): super (ChannelAttention, self). _ init__ () self.avg_pool = nn.AdaptiveAvgPool2d (1) self.max_pool = nn.AdaptiveMaxPool2d (1) self.fc1 = nn.Conv2d (in_planes, in_planes / / ratio, 1 Bias=False) self.relu1 = nn.ReLU () self.fc2 = nn.Conv2d (in_planes / / ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid () def forward (self X): avg_out = self.fc2 (self.relu1 (self.fc1 (self.avg_pool (x) max_out = self.fc2 (self.relu1 (self.fc1 (self.max_pool (x) out = avg_out + max_out return self.sigmoid (out) if _ name__ = ='_ main__':CA = ChannelAttention (32) data_in = torch.randn (8Power32300300) data_out = CA (data_in) print (data_in.shape) # torch.Size ([8 32,300,300]) print (data_out.shape) # torch.Size ([8,32,1,1])
Console output result:
It took 958 milliseconds to load personal and system profiles. (base) PS C:\ Users\ chenxuqi\ Desktop\ News4cxq\ test4cxq > &'D:\ Anaconda3\ envs\ ssd4pytorch2_2_0\ python.exe''c:\ Users\ chenxuqi\ .vscode\ extensions\ ms-python.python-2021.1.502429796\ pythonFiles\ lib\ python\ debugpy\ launcher' '53813' -' c:\ Users\ chenxuqi\ Desktop\ News4cxq\ test4cxq\ test1.py'torch.Size ([8,32,300,300]) torch.Size ([8,32,1]) 1]) (base) PS C:\ Users\ chenxuqi\ Desktop\ News4cxq\ test4cxq > conda activate ssd4pytorch2_2_0 (ssd4pytorch2_2_0) PS C:\ Users\ chenxuqi\ Desktop\ News4cxq\ test4cxq >
Channel attention mechanism:
Import torchfrom torch import nnclass SpatialAttention (nn.Module): def _ _ init__ (self, kernel_size=7): super (SpatialAttention, self). _ _ init__ () assert kernel_size in (3,7), 'kernel size must be 3 or 7'padding = 3 if kernel_size= = 7 else 1self.conv1 = nn.Conv2d (2, 1, kernel_size, padding=padding, bias=False) # 73meme 3Lself.sigmoid = nn.Sigmoid def forward (self, x): avg_out = torch.mean (x, dim=1, keepdim=True) max_out _ = torch.max (x, dim=1, keepdim=True) x = torch.cat ([avg_out, max_out], dim=1) x = self.conv1 (x) return self.sigmoid (x) if _ name__ ='_ main__':SA = SpatialAttention (7) data_in = torch.randn (832300300) data_out = SA (data_in) print (data_in.shape) # torch.Size ([832,300,300]) print (data_out.shape) # torch.Size ([8,1,300]) 300])
Console output result:
It took 959 milliseconds to load personal and system profiles. (base) PS C:\ Users\ chenxuqi\ Desktop\ News4cxq\ test4cxq > conda activate ssd4pytorch2_2_0 (ssd4pytorch2_2_0) PS C:\ Users\ chenxuqi\ Desktop\ News4cxq\ test4cxq > &'D:\ Anaconda3\ envs\ ssd4pytorch2_2_0\ python.exe''c:\ Users\ chenxuqi\ .vscode\ extensions\ ms-python.python-2021.1.502429796\ lib\ python\ debugpy\ launcher' '53827' -' c:\ Users\ chenxuqi\ Desktop\ News4cxq\ test4cxq\ test2.py'torch.Size ([8 32,300,300]) torch.Size ([8,1,300,300]) (ssd4pytorch2_2_0) PS C:\ Users\ chenxuqi\ Desktop\ News4cxq\ test4cxq > "how to implement the attention mechanism of web" ends here Thank you for your reading. If you want to know more about the industry, you can follow the website, the editor will output more high-quality practical articles for you!
Welcome to subscribe "Shulou Technology Information " to get latest news, interesting things and hot topics in the IT industry, and controls the hottest and latest Internet news, technology news and IT industry trends.
Views: 0
*The comments in the above article only represent the author's personal views and do not represent the views and positions of this website. If you have more insights, please feel free to contribute and share.
Continue with the installation of the previous hadoop.First, install zookooper1. Decompress zookoope
"Every 5-10 years, there's a rare product, a really special, very unusual product that's the most un
© 2024 shulou.com SLNews company. All rights reserved.