Network Security Internet Technology Development Database Servers Mobile Phone Android Software Apple Software Computer Software News IT Information

In addition to Weibo, there is also WeChat

Please pay attention

WeChat public account

Shulou

How to read Kafka messages and its offsetRange in Spark Streaming job

2025-04-05 Update From: SLTechnology News&Howtos shulou NAV: SLTechnology News&Howtos > Internet Technology >

Share

Shulou(Shulou.com)06/01 Report--

This article shows you how to read Kafka messages and its offsetRange in Spark Streaming job. The content is concise and easy to understand. It will definitely brighten your eyes. I hope you can get something through the detailed introduction of this article.

When reading messages in Kafka topic (s) in Spark Streaming job, we sometimes need to synchronously record the offsetRange of each read messages. To achieve this, the following two pieces of code (code 1 and code 2) are correct and equivalent.

Code 1 (correct):

JavaPairInputDStream messages = KafkaUtils.createDirectStream (

Jssc

String.class

String.class

StringDecoder.class

StringDecoder.class

KafkaParams

TopicsSet

);

Messages.foreachRDD (

New Function () {

@ Override

Public Void call (JavaPairRDD rdd) throws Exception {

OffsetRange [] offsets = ((HasOffsetRanges) rdd.rdd ()) .offsetRanges ()

JavaRDD valueRDD = rdd.values ()

Long msgNum = processEachRDD (valueRDD, outputFolderPath, definedDuration)

If (msgNum > 0 & & zkPathRootworthy = null) {

WriteOffsetToZookeeper (zkClient, zkPathRoot, offsets)

}

Return null

}

});

Code 2 (correct):

JavaPairInputDStream messages = KafkaUtils.createDirectStream (

Jssc

String.class

String.class

StringDecoder.class

StringDecoder.class

KafkaParams

TopicsSet

);

Final AtomicReference offsetRanges=new AtomicReference ()

Lines = messages.transformToPair (new Function () {

@ Override

Public JavaPairRDD call (JavaPairRDD rdd) throws Exception {

OffsetRange [] offsets = ((HasOffsetRanges) rdd.rdd ()) .offsetRanges ()

OffsetRanges.set (offsets)

Return rdd

}

}) .map (new Function () {

@ Override

Public String call (Tuple2 tuple2) {

Return tuple2._2 ()

}

});

Lines.foreachRDD (new Function () {

@ Override

Public Void call (JavaRDD rdd) throws Exception {

Long msgNum = processEachRDD (rdd, outputFolderPath, definedDuration)

If (msgNum > 0 & & zkPathRootworthy = null) {

OffsetRange [] offsets = offsetRanges.get ()

WriteOffsetToZookeeper (zkClient, zkPathRoot, offsets)

}

Return null

}

});

Note, however, that the following two pieces of code (code 3 and code 4) are incorrect and both throw an exception:java.lang.ClassCastException: org.apache.spark.rdd.MapPartitionsRDD cannot be cast to org.apache.spark.streaming.kafka.HasOffsetRanges

Code 3 (error):

JavaPairInputDStream messages = KafkaUtils.createDirectStream (

Jssc

String.class

String.class

StringDecoder.class

StringDecoder.class

KafkaParams

TopicsSet

);

Messages.transform (new Function () {

@ Override

Public JavaRDD call (JavaPairRDD rdd) throws Exception {

Return rdd.values ()

}

}) .foreachRDD (new Function () {

@ Override

Public Void call (JavaRDD rdd) throws Exception {

Long msgNum = processEachRDD (rdd, outputFolderPath, definedDuration)

If (msgNum > 0 & & zkPathRootworthy = null) {

OffsetRange [] offsets = offsetRanges.get ()

WriteOffsetToZookeeper (zkClient, zkPathRoot, offsets)

}

Return null

}

});

Code 4 (error):

JavaPairInputDStream messages = KafkaUtils.createDirectStream (

Jssc

String.class

String.class

StringDecoder.class

StringDecoder.class

KafkaParams

TopicsSet

);

Messages.map (new Function () {

@ Override

Public String call (Tuple2 tuple2) {

Return tuple2._2 ()

}

}) .foreachRDD (new Function () {

@ Override

Public Void call (JavaRDD rdd) throws Exception {

Long msgNum = processEachRDD (rdd, outputFolderPath, definedDuration)

If (msgNum > 0 & & zkPathRootworthy = null) {

OffsetRange [] offsets = offsetRanges.get ()

WriteOffsetToZookeeper (zkClient, zkPathRoot, offsets)

}

Return null

}

});

The above is how to read Kafka messages and its offsetRange in Spark Streaming job. Have you learned any knowledge or skills? If you want to learn more skills or enrich your knowledge reserve, you are welcome to follow the industry information channel.

Welcome to subscribe "Shulou Technology Information " to get latest news, interesting things and hot topics in the IT industry, and controls the hottest and latest Internet news, technology news and IT industry trends.

Views: 0

*The comments in the above article only represent the author's personal views and do not represent the views and positions of this website. If you have more insights, please feel free to contribute and share.

Share To

Internet Technology

Wechat

© 2024 shulou.com SLNews company. All rights reserved.

12
Report