Network Security Internet Technology Development Database Servers Mobile Phone Android Software Apple Software Computer Software News IT Information

In addition to Weibo, there is also WeChat

Please pay attention

WeChat public account

Shulou

How to write code to identify the font and split it into separate pictures

2025-01-16 Update From: SLTechnology News&Howtos shulou NAV: SLTechnology News&Howtos > Development >

Share

Shulou(Shulou.com)06/03 Report--

This article mainly explains "how to write a code recognition frame to select a font and divide it into a separate picture". The explanation in the article is simple and clear, and it is easy to learn and understand. let's study and learn how to write a code recognition frame to select a font and divide it into a separate picture.

# juzicode.com/vx: orange code

Import os,sys,time,cv2

Import numpy as np

Dbg_is_show = False

Def show_img (win_name,img,wait_time=0,img_ratio=0.15,is_show=True):

If is_show is not True:

Return

Rows = img.shape [0]

Cols = img.shape [1]

Cv2.namedWindow (win_name, cv2.WINDOW_NORMAL) # cv2.WINDOW_AUTOSIZE)

Cv2.resizeWindow (win_name, (int (cols*img_ratio), int (rows*img_ratio)

Cv2.imshow (win_name,img)

Cv2.waitKey (wait_time)

If not os.path.exists ('out'):

Os.mkdir ('out')

Print ('juzicode.com/vx: orange code')

Print (cv2.__version__)

Img_src = cv2.imread ('src.jpg')

Print (img_src.shape)

Show_img ('img_src',img_src,is_show=dbg_is_show)

# get grayscale image

Img_b, img_g, img_r = cv2.split (img_src)

Show_img ('img_r',img_r,is_show=dbg_is_show)

Img_gray = cv2.bitwise_not (img_r)

Img_gray= cv2.medianBlur (img_gray,5)

# binarization

Thresh_bin,img_bin= cv2.threshold (img_gray,127,255,cv2.THRESH_BINARY)

Show_img ('img_bin',img_bin,is_show=dbg_is_show)

Kernel = cv2.getStructuringElement (cv2.MORPH_RECT, (3,3))

Img_eroded = cv2.erode (img_bin,kernel)

Show_img ('img_eroded',img_eroded)

Kernel = cv2.getStructuringElement (cv2.MORPH_RECT, (29,29))

Img_dilated = cv2.dilate (img_eroded,kernel)

Show_img ('img_dilated',img_dilated)

Res = cv2.findContours (img_dilated,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

Contours=res [1]

Print ('len (contours):', len (contours))

For i in range (0jinlen (contours)):

X, y, w, h = cv2.boundingRect (contours [I])

Print (iPaper len (contours [I]))

If len (contours [I])

Welcome to subscribe "Shulou Technology Information " to get latest news, interesting things and hot topics in the IT industry, and controls the hottest and latest Internet news, technology news and IT industry trends.

Views: 0

*The comments in the above article only represent the author's personal views and do not represent the views and positions of this website. If you have more insights, please feel free to contribute and share.

Share To

Development

Wechat

© 2024 shulou.com SLNews company. All rights reserved.

12
Report