Network Security Internet Technology Development Database Servers Mobile Phone Android Software Apple Software Computer Software News IT Information

In addition to Weibo, there is also WeChat

Please pay attention

WeChat public account

Shulou

Detailed explanation of moving target detection based on Python artificial intelligence mixed Gaussian model

2025-02-22 Update From: SLTechnology News&Howtos shulou NAV: SLTechnology News&Howtos > Development >

Share

Shulou(Shulou.com)06/02 Report--

The main content of this article is "detailed explanation of Python artificial intelligence mixed Gaussian model moving target detection", interested friends may wish to have a look. The method introduced in this paper is simple, fast and practical. Next let the editor to take you to learn "detailed understanding of Python artificial intelligence mixed Gaussian model moving target detection" bar!

Import cv2import numpy as np# algorithm extraction work Gaussian algorithm class gaussian: def _ _ init__ (self): self.mean = np.zeros ((1,3)) self.covariance = 0 self.weight = 0 Self.Next = None self.Previous = Noneclass Node: def _ _ init__ (self): self.pixel_s = None self.pixel_r = None self.no_of_components = 0 self.Next = Noneclass Node1: def _ init__ (self): self.gauss = None self.no_of_comp = 0 self.Next = Nonecovariance0 = 11.0def Create_gaussian (info1, info2 Info3): ptr = gaussian () if (ptr is not None): ptr.mean [1,1] = info1 ptr.mean [1,2] = info2 ptr.mean [1,3] = info3 ptr.covariance = covariance0 ptr.weight = 0.002 ptr.Next = None ptr.Previous = None return ptrdef Create_Node (info1, info2 Info3): N_ptr = Node () if (N_ptr is not None): N_ptr.Next = None N_ptr.no_of_components = 1 N_ptr.pixel_s = N_ptr.pixel_r = Create_gaussian (info1, info2) Info3) return N_ptrList_node = [] def Insert_End_Node (n): List_node.append (n) List_gaussian = [] def Insert_End_gaussian (n): List_gaussian.append (n) def Delete_gaussian (n): List_gaussian.remove (n) Class Process: def _ init__ (self, alpha, firstFrame): self.alpha = alpha self.background = firstFrame def get_value (self, frame): self.background = frame * self.alpha + self.background * (1-self.alpha) return cv2.absdiff (self.background.astype (np.uint8), frame) def denoise (frame): frame = cv2.medianBlur (frame, 5) frame = cv2.GaussianBlur (frame, (5,5) 0) return framecapture = cv2.VideoCapture ('1.mp4') ret, orig_frame = capture.read () if ret is True: value1 = Process (0.1, denoise (orig_frame)) run = Trueelse: run = Falsewhile (run): ret, frame = capture.read () value = False If ret is True: cv2.imshow ('input', denoise (frame)) grayscale = value1.get_value (denoise (frame)) ret, mask = cv2.threshold (grayscale, 15,255, cv2.THRESH_BINARY) cv2.imshow (' mask') Mask) key = cv2.waitKey (10) & 0xFF else: break if key = = 27: break if value = = True: orig_frame = cv2.resize (orig_frame, (340,260), interpolation=cv2.INTER_CUBIC) orig_frame = cv2.cvtColor (orig_frame Cv2.COLOR_BGR2GRAY) orig_image_row = len (orig_frame) orig_image_col = orig_frame [0] bin_frame = np.zeros ((orig_image_row, orig_image_col)) value = [] for i in range (0, orig_image_row): for j in range (0) Orig_image_col): N_ptr = Create_Node (orig_ framework [I] [0], orig_ framework [I] [1] Orig_ frame [I] [2]) if N_ptr is not None: N_ptr.pixel_s.weight = 1.0Insert_End_Node (N_ptr) else: print ("error") exit (0) nL = orig_image_row NC = orig_image_col dell = np.array ((1 3)) Mal_dist = 0; temp_cov = 0; alpha = 0.002; cT = 0.05; cf = 0.1; cfbar = 1.0-cf; alpha_bar = 1.0-alpha; prune =-alpha * cT; cthr = 0.00001; var = 0.0 muG = 0.0; muR = 0.0 MuB = 0; dR = 0; dB = 0; dG = 0; rval = 0; gval = 0; bval = 0; while (1): duration3 = 0; count = 0; count1 = 0; List_node1 = List_node Counter = 0; duration = cv2.getTickCount (); for i in range (0, nL): r_ptr = orig_ framework [I] b_ptr = bin_ framework [I] for j in range (0, nC): sum = 0.0; sum1 = 0.0 Close = False; background = 0; rval = r_ptr [0] [0]; gval = r_ptr [0] [0]; bval = r_ptr [0] [0]; start = List_ Node1 [counter] .pixel _ s Rear = List_ Node1 [counter] .pixel _ r; ptr = start; temp_ptr = None; if (List_ Node1 [counter] .no _ of_component > 4): Delete_gaussian (rear) List_ Node1 [counter] .no _ of_component = List_ Node1 [counter] .no _ of_component-1; for k in range (0, List_ Node1 [counter] .no _ of_component): weight = List_ Node1 [counter] .weight; mult = alpha / weight Weight = weight * alpha_bar + prune; if (close = = False): muR = ptr.mean [0]; muG = ptr.mean [1]; muB = ptr.mean [2]; dR = rval-muR DG = gval-muG; dB = bval-muB; var = ptr.covariance; mal_dist = (dR * dR + dG * dG + dB * dB); if ((sum

< cfbar) and (mal_dist < 16.0 * var * var)): background = 255; if (mal_dist < (9.0 * var * var)): weight = weight + alpha; if mult < 20.0 * alpha: mult = mult; else: mult = 20.0 * alpha; close = True; ptr.mean[0] = muR + mult * dR; ptr.mean[1] = muG + mult * dG; ptr.mean[2] = muB + mult * dB; temp_cov = var + mult * (mal_dist - var); if temp_cov < 5.0: ptr.covariance = 5.0 else: if (temp_cov >

20): ptr.covariance = 20.0 else: ptr.covariance = temp_cov; temp_ptr = ptr If (weight <-prune): ptr = Delete_gaussian (ptr); weight = 0; List_ Node1 [counter] .no _ of_component = List_ node1 [counter] .no _ of_component-1 Else: sum + = weight; ptr.weight = weight; ptr = ptr.Next; if (close = = False): ptr = gaussian (); ptr.weight = alpha Ptr.mean [0] = rval; ptr.mean [1] = gval; ptr.mean [2] = bval; ptr.covariance = covariance0; ptr.Next = None; ptr.Previous = None Insert_End_gaussian (ptr); List_gaussian.append (ptr); temp_ptr = ptr; List_ Node1 [counter] .no _ of_components = List_ Node1 [counter] .no _ of_components + 1; ptr = start While (ptr! = None): ptr.weight = ptr.weight / sum; ptr = ptr.Next; while (temp_ptr! = None and temp_ptr.Previous! = None): if (temp_ptr.weight

Welcome to subscribe "Shulou Technology Information " to get latest news, interesting things and hot topics in the IT industry, and controls the hottest and latest Internet news, technology news and IT industry trends.

Views: 0

*The comments in the above article only represent the author's personal views and do not represent the views and positions of this website. If you have more insights, please feel free to contribute and share.

Share To

Development

Wechat

© 2024 shulou.com SLNews company. All rights reserved.

12
Report