In addition to Weibo, there is also WeChat
Please pay attention
WeChat public account
Shulou
2025-01-20 Update From: SLTechnology News&Howtos shulou NAV: SLTechnology News&Howtos > Network Security >
Share
Shulou(Shulou.com)06/01 Report--
A case study of Advanced Network Integrated practical Architecture
Description of the experimental topology:
1. SW1-3 SW2-3, an internal layer 3 switch, is responsible for internal data exchange and forwarding between external and internal network segments, SW3,SW4,SW5 is an internal access layer switch, is responsible for internal network access, and R3 is a router connecting internal and external to external and inter-area. An internal network structure is formed. (area 0)
2. R4 is the internal area 1 router, which connects the network within area 1, and R3 is the router connecting area 1 to external and internal area 0.
3. R1 is the router in remote internal network area 2 that connects the internal network and the external network, and connects R3 and area 0 to configure a site-to-site router.
4. R2 is a router on the Internet.. Connect to all internal networks.
5. Access layer 3 switches "Catalyst2950-48" aggregation layer 2 layer 3 switches "CISCO3550-48" routers 4 cisco 2600xm.
Lab-related IP configuration:
1. Sw1-3 layer 3 switch above configuration: Vlan2:192.168.1.1/24
Vlan3:192.168.4.1/24
Vlan4:192.168.5.1/24
Vlan5:192.168.6.1/24
2. Sw2-3 layer 3 switch configuration: Vlan2:192.168.1.2/24
Vlan3:192.168.4.2/24
Vlna4:192.168.5.2/24
Vlan5:192.168.6.2/24
3. HSRP virtual address: Vlan2:192.168.1.254.
Vlan3:192.168.4.254.
Vlan4:192.168.5.254.
Vlan5:192.168.6.254.
4. Virtual tunnel address at both ends of xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
R1:1.1.1.2/24
5.NAT uses port multiplexing address translation. "S0swap 1"
Brief introduction to the protocols related to the experiment:
1. VTP protocol: VLAN Relay Protocol (VTP,VLAN TRUNKING PROTOCOL) is a CISCO proprietary protocol, which is supported by most switches. VTP is responsible for synchronizing VLAN information in the VTP domain, so that it is not necessary to configure the same VLAN information on each exchange.
2. STP protocol: STP (Spanning Tree Protocol) is the abbreviation of spanning Tree Protocol. The protocol can be applied to the loop network to achieve path redundancy through certain algorithms, and at the same time, the loop network is trimmed into a tree network without loop, so as to avoid the proliferation and infinite circulation of packets in the loop network.
3. OSPF protocol: OSPF (Open Shortest Path First) is an interior gateway protocol (Interior Gateway Protocol, referred to as IGP), which is used to make routing decisions within a single autonomous system (autonomous system,AS). In contrast to RIP, OSPF is a link-state routing protocol, while RIP is a distance vector routing protocol. (external gateway protocol is: Exterior Gateway,Protocols EGP)
4. HSRP protocol: HSRP: hot standby Router Protocol (HSRP:Hot Standby Router Protocol, Hot standby Router Protocol HSRP) is designed to support IP traffic failover without confusion under certain circumstances, allow hosts to use a single router, and maintain connectivity between routers even if the actual first-hop router fails. In other words, when the source host cannot dynamically know the IP address of the first-hop router, the HSRP protocol can protect the first-hop router from failure. The protocol contains a variety of routers, corresponding to a virtual router. The HSRP protocol supports only one router to perform packet forwarding on behalf of the virtual router. End hosts forward their respective packets to the virtual router. The router responsible for forwarding packets is called an active router (Active Router). If the active router fails, HSRP will activate the backup router (Standby Routers) instead of the active router. The HSRP protocol provides a mechanism for deciding whether to use an active router or a backup router and specifies a virtual IP address as the default gateway address for the network system. If the active router fails, the backup router (Standby Routers) takes on all the tasks of the active router and does not cause the interruption of host connectivity. HSRP runs on UDP with port number 1985. The source address of the router forwarding protocol packet is the actual IP address, not the virtual address. Based on this, HSRP routers can recognize each other.
5. NAT protocol: the full name of NAT is "Network Address Translation" in English, which means "network address translation" in Chinese. It is an IETF (Internet Engineering Task Force, Internet Engineering Task Force) standard that allows a whole organization to appear on Internet with a public IP (Internet Protocol) address. As the name implies, it is a technology that translates internal private network addresses (IP addresses) into legal network IP addresses.
6. Xxxx protocol: the English full name of xxxx is "Virtual Private Network", which translates to "virtual private network". As the name implies, virtual private network can be understood as a virtual private line within an enterprise. Virtual private network (× × ×) is defined as establishing a temporary, secure connection through a public network (usually the Internet). It is a secure and stable tunnel through a chaotic public network.
Experimental objectives:
1. The VTP protocol is configured through the network topology, and the STP spanning tree protocol enables the internal network to have efficient and stable performance, thus forming a redundant function for the link.
two。 Enable the OSPF link-state routing protocol in different areas to enable network interworking.
3. Configure HSRP hot backup routing protocol to ensure that users can work properly when edge devices fail.
4. Configure NAT port address multiplexing translation on R 3 so that the internal network can access the external network.
5. Configure site TO sites on R 1 and R 3 so that the internal networks of the two sites can communicate securely.
6. Through the above configuration to form an efficient, stable, secure and redundant network structure.
Detailed explanation of the experimental steps:
Relevant settings before configuration: (do not configure if the device is new)
# Clear line 1 Murray 8 clears designated lines (8-pin lines)
# erase statup-config clear configuration.
# reload restart the device
# show flash: view the previous vlans configuration database.
# delete flash:vlan.dat deletes the previous vlan configuration database.
1. Configure VTP:
Sw1-3 (vlan) # vtp domain test
Changing VTP domain name from NULL to test
Sw1-3 (vlan) # vtp server
Device mode already VTP SERVER.
Sw1-3 (vlan) # vtp password 111111
Setting device VLAN database password to 111111.
Sw1-3 (vlan) # vtp v2-mode
V2 mode enabled.
Sw1-3 (vlan) # vtp pruning
Pruning switched ON
Sw2-3 (vlan) # vtp domain test
Changing VTP domain name from NULL to test
Sw2-3 (vlan) # vtp domain server
Changing VTP domain name from test to server
Sw2-3 (vlan) # vtp password 111111
Setting device VLAN database password to 111111.
Sw2-3 (vlan) # vtp v2-mode
V2 mode enabled.
Sw2-3 (vlan) # vtp pruning
Pruning switched ON
Sw3 (vlan) # vtp domain test
Changing VTP domain name from NULL to test
Sw3 (vlan) # vtp client
Setting device to VTP CLIENT mode.
Sw3 (vlan) # vtp password 111111
Setting device VLAN database password to 111111.
Sw4 (vlan) # vtp domain test
Changing VTP domain name from NULL to test
Sw4 (vlan) # vtp client
Setting device to VTP CLIENT mode.
Sw4 (vlan) # vtp password 111111
Setting device VLAN database password to 111111.
Sw4 (vlan) # exit
Sw5 (vlan) # vtp domain test
Changing VTP domain name from NULL to test
Sw5 (vlan) # vtp client
Setting device to VTP CLIENT mode.
Sw5 (vlan) # vtp password 111111
Setting device VLAN database password to 111111.
Sw1-3#show vtp status
VTP Version: 2
Configuration Revision: 5
Maximum VLANs supported locally: 256
Number of existing VLANs: 9
VTP Operating Mode: Server
VTP Domain Name: test
VTP Pruning Mode: Enabled
VTP V2 Mode: Enabled
VTP Traps Generation: Disabled
MD5 digest: 0x2B 0xF6 0xD8 0xE3 0x28 0x13 0x8F 0xC4
Configuration last modified by 0.0.0.0 at 3-1-02 00:15:38
Local updater ID is 192.168.1.1 on interface Vl2 (lowest numbered VLAN interface found)
2.TRUNK configuration:
Sw1-3 (config) # in range f0ax 14-15
Sw1-3 (config-if-range) # switchport mode trunk
Sw1-3 (config-if-range) # no sh
Sw1-3 (config) # in range f0swap 1-3
Sw1-3 (config-if-range) # switchport mode trunk
Sw1-3 (config-if-range) # no sh
Sw2-3 (config) # in range f0ax 14-15
Sw2-3 (config-if-range) # switchport mode trunk
Sw2-3 (config-if-range) # no sh
Sw2-3 (config) # in range f0swap 1-3
Sw2-3 (config-if-range) # switchport mode trunk
Sw2-3 (config-if-range) # no sh
Sw3 (config) # in range f0amp 1-2
Sw3 (config-if-range) # switchport mode trunk
Sw3 (config-if-range) # no sh
Sw4 (config) # in range f0amp 1-2
Sw4 (config-if-range) # switchport mode trunk
Sw4 (config-if-range) # no sh
Sw5 (config) # in range f0amp 1-2
Sw5 (config-if-range) # switchport mode trunk
Sw5 (config-if-range) # no sh
Sw1-3#show interfaces trunk test
Port Mode Encapsulation Status Native vlan
Fa0/1 on 802.1q trunking 1
Fa0/2 on 802.1q trunking 1
Fa0/3 on 802.1q trunking 1
Fa0/14 on 802.1q trunking 1
Fa0/15 on 802.1q trunking 1
3.VLAN configuration:
Sw1-3#vlan da
Sw1-3 (vlan) # vlan 2 name v2
VLAN 2 added:
Name: v2
Sw1-3 (vlan) # apply
APPLY completed.
Sw1-3 (vlan) # vlan 3 name v3
VLAN 3 added:
Name: v3
Sw1-3 (vlan) # apply
APPLY completed.
Sw1-3 (vlan) # vlan 4 name v4
VLAN 4 added:
Name: v4
Sw1-3 (vlan) # apply
APPLY completed.
Sw1-3 (vlan) # vlan 5 name v5
VLAN 5 added:
Name: v5
Sw1-3 (vlan) # apply
APPLY completed.
Sw1-3#show vlan-switch
VLAN Name Status Ports
1 default active Fa0/0, Fa0/4, Fa0/5, Fa0/6
Fa0/7, Fa0/8, Fa0/9, Fa0/10
Fa0/11, Fa0/12, Fa0/13
2 v2 active
3 v3 active
4 v4 active
5 v5 active
1002 fddi-default active
1003 trcrf-default active
1004 fddinet-default active
1005 trbrf-default active
Sw2-3#show vlan-switch
VLAN Name Status Ports
1 default active Fa0/0, Fa0/4, Fa0/5, Fa0/6
Fa0/7, Fa0/8, Fa0/9, Fa0/10
Fa0/11, Fa0/12, Fa0/13
2 v2 active
3 v3 active
4 v4 active
5 v5 active
1002 fddi-default active
1003 trcrf-default active
1004 fddinet-default active
1005 trbrf-default active
Sw3#show vlan-switch tests whether the client learns VLAN
VLAN Name Status Ports
1 default active Fa0/0, Fa0/3, Fa0/4, Fa0/5
Fa0/6, Fa0/7, Fa0/8, Fa0/9
Fa0/10, Fa0/11, Fa0/12, Fa0/13
Fa0/14, Fa0/15
2 v2 active
3 v3 active
4 v4 active
5 v5 active
1002 fddi-default active
1003 trcrf-default active
1004 fddinet-default active
1005 trbrf-default active
Sw4#show vlan-switch
VLAN Name Status Ports
1 default active Fa0/0, Fa0/3, Fa0/4, Fa0/5
Fa0/6, Fa0/7, Fa0/8, Fa0/9
Fa0/10, Fa0/11, Fa0/12, Fa0/13
Fa0/14, Fa0/15
2 v2 active
3 v3 active
4 v4 active
5 v5 active
1002 fddi-default active
1003 trcrf-default active
1004 fddinet-default active
1005 trbrf-default active
W5#show vlan-switch
VLAN Name Status Ports
1 default active Fa0/0, Fa0/3, Fa0/4, Fa0/5
Fa0/6, Fa0/7, Fa0/8, Fa0/9
Fa0/10, Fa0/11, Fa0/12, Fa0/13
Fa0/14, Fa0/15
2 v2 active
3 v3 active
4 v4 active
5 v5 active
1002 fddi-default active
1003 trcrf-default active
1004 fddinet-default active
1005 trbrf-default active
4. Open the Ethernet channel:
W1-3 (config) # in range f0amp 14-15
Sw1-3 (config-if-range) # channel-group 1 mode on
Sw1-3#show ip in br
Port-channel1 unassigned YES unset up up
Sw2-3 (config) # in range f0ax 14-15
Sw2-3 (config-if-range) # channel-group 1 mode on
Sw2-3#show ip in br
Interface IP-Address OK? Method Status
Port-channel1 unassigned YES unset up up
5. Configure STP generation protocol:
Configure SWITCH1 as the root bridge for VLAN3 and VLAN5, and the secondary root bridge for VLAN2 and VLAN4
Configure SWITCH2 as the root bridge for VLAN2 and VLAN4, and the secondary root bridge for VLAN3 and VLAN5
Sw1-3 (config) # spanning-tree vlan 3 root primary
Sw1-3 (config) # spanning-tree vlan 5 root primary
Sw1-3 (config) # spanning-tree vlan 2 root secondary
Sw1-3 (config) # spanning-tree vlan 4 root secondary
Sw2-3 (config) # spanning-tree vlan 2 root primary
Sw2-3 (config) # spanning-tree vlan 4 root primary
Sw2-3 (config) # spanning-tree vlan 5 root secondary
Sw2-3 (config) # spanning-tree vlan 3 root secondary
6. Verify STP configuration
Sw3 (config) # show spanning-tree br
VLAN2
Name Port ID Prio Cost Sts Cost Bridge ID Port ID
FastEthernet0/1 128.2 128 19 BLK 12 16384 cc00.0cd8.0001 128.2
FastEthernet0/2 128.3 128 19 FWD 0 8192 cc00.07c8.0001 128.2
VLAN3
Name Port ID Prio Cost Sts Cost Bridge ID Port ID
FastEthernet0/1 128.2 128 19 FWD 0 8192 cc00.0cd8.0002 128.2
FastEthernet0/2 128.3 128 19 BLK 12 16384 cc00.07c8.0002 128.2
VLAN4
Name Port ID Prio Cost Sts Cost Bridge ID Port ID
FastEthernet0/1 128.2 128 19 BLK 12 16384 cc00.0cd8.0003 128.2
FastEthernet0/2 128.3 128 19 FWD 0 8192 cc00.07c8.0003 128.2
VLAN5
Name Port ID Prio Cost Sts Cost Bridge ID Port ID
FastEthernet0/1 128.2 128 19 FWD 0 8192 cc00.0cd8.0004 128.2
FastEthernet0/2 128.3 128 19 BLK 12 16384 cc00.07c8.0004 128.2
7. Configure the routing interface:
Sw1-3 (config) # in f0Let0
Sw1-3 (config-if) # no switchport turn off the switch function
Sw1-3 (config-if) # ip add 192.168.10.2 255.255.255.252
Sw1-3 (config-if) # no sh
Sw2-3 (config) # in f0Let0
Sw2-3 (config-if) # no switchport
Sw2-3 (config-if) # ip add 192.168.10.6 255.255.255.252
Sw2-3 (config-if) # no sh
8. Routing-related IP configuration:
R3#show ip in br
Interface IP-Address OK? Method Status Protocol
Serial0/0 192.168.10.9 YES manual up up
Serial0/1 202.0.0.1 YES manual up up
Serial0/2 unassigned YES unset administratively down down
Serial0/3 unassigned YES unset administratively down down
FastEthernet1/0 192.168.10.1 YES manual up up
FastEthernet2/0 192.168.10.5 YES manual up up
R4#show ip in br
Interface IP-Address OK? Method Status Protocol
Serial0/0 192.168.10.10 YES manual up up
Serial0/1 unassigned YES unset administratively down down
Serial0/2 unassigned YES unset administratively down down
Serial0/3 unassigned YES unset administratively down down
Loopback0 6.6.6.6 YES manual up up
R2#show ip in br
Interface IP-Address OK? Method Status Protocol
Serial0/0 201.0.0.1 YES manual up up
Serial0/1 202.0.0.2 YES manual up up
Serial0/2 unassigned YES unset administratively down down
Serial0/3 unassigned YES unset administratively down down
R1#show ip in br
Interface IP-Address OK? Method Status Protocol
Serial0/0 201.0.0.1 YES manual up up
Serial0/1 unassigned YES unset administratively down down
Serial0/2 unassigned YES unset administratively down down
Serial0/3 unassigned YES unset administratively down down
Loopback0 7.7.7.7 YES manual up up
Sw1-3#show ip in br
Protocol
Vlan2 192.168.1.1 YES manual up up
Vlan3 192.168.4.1 YES manual up up
Vlan4 192.168.5.1 YES manual up up
Vlan5 192.168.6.1 YES manual up up
Sw1-slave
Sw2-3#show ip in br
Protocol
Vlan2 192.168.1.2 YES manual up up
Vlan3 192.168.4.2 YES manual up up
Vlan4 192.168.5.2 YES manual up up
Vlan5 192.168.6.2 YES manual up up
9.OSPF configuration
Sw1-3 (config) # ip routing starts the routing function
Sw1-3 (config) # router ospf 100
Sw1-3 (config-router) # network 192.168.10.2 0.0.0.0 area 0
Sw1-3 (config-router) # network 192.168.1.1 0.0.0.0 area 0
Sw1-3 (config-router) # network 192.168.4.1 0.0.0.0 area 0
Sw1-3 (config-router) # network 192.168.5.1 0.0.0.0 area 0
Sw1-3 (config-router) # network 192.168.6.1 0.0.0.0 area 0
Sw2-3 (config) # router ospf 100
Sw2-3 (config-router) # network 192.168.10.6 0.0.0.0 area 0
Sw2-3 (config-router) # network 192.168.1.2 0.0.0.0 area 0
Sw2-3 (config-router) # network 192.168.4.2 0.0.0.0 area 0
Sw2-3 (config-router) # network 192.168.5.2 0.0.0.0 area 0
Sw2-3 (config-router) # network 192.168.6.2 0.0.0.0 area 0
Sw1-3#show ip route test
O 192.168.10.4/30 [110/2] via 192.168.6.2, 00:39:43, Vlan5
[110/2] via 192.168.5.2, 00:39:43, Vlan4
[110/2] via 192.168.4.2, 00:39:43, Vlan3
[110/2] via 192.168.1.2, 00:39:43, Vlan2
Sw2-3#show ip route
O 192.168.10.0 [110/2] via 192.168.6.1, 00:00:35, Vlan5
[110/2] via 192.168.5.1, 00:00:35, Vlan4
[110/2] via 192.168.4.1, 00:00:35, Vlan3
[110/2] via 192.168.1.1, 00:00:35, Vlan2
R3 (config) # router ospf 100
R3 (config-router) # network 192.168.10.1 0.0.0.0 area 0
R3 (config-router) # network 192.168.10.5 0.0.0.0 area 0
R3 (config-router) # network 192.168.10.9 0.0.0.0 area 1
R3 (config) # ip route 0.0.0.0 0.0.0.0 202.0.0.2 configure a static default route to access the external network.
R3 (config) # router ospf 100
R3 (config-router) # default-information originate announces a default route outward to the internal stub network router connected to it (this command is for stub networks)
R4 (config) # router ospf 100
R4 (config-router) # network 192.168.10.10 0.0.0.0 area 1
R4 (config-router) # network 6.6.6.6 0.0.0.0 area 1
Test (results of the default-intormation originate command)
R4#show ip route
O*E2 0.0.0.0 O*E2 0 [110ax 1] via 192.168.10.9, 00:00:18, Serial0/0 goes to the external default route
Sw1-3#show ip route
O*E2 0.0.0.0 O*E2 0 [110ax 1] via 192.168.10.1, 00:00:28, FastEthernet0/0 goes to the external default route
Sw2-3#show ip route
O*E2 0.0.0.0 O*E2 0 [110ax 1] via 192.168.10.5, 00:03:01, FastEthernet0/0 goes to the external default route
R1 (config) # router ospf 100
R1 (config-router) # network 7.7.7.7 0.0.0.0 area 2
R1 (config) # ip route 0.0.0.0 0.0.0.0 201.0.0.2
R3#show ip route test
6.0.0.0/32 is subnetted, 1 subnets
O 6.6.6.6 [110/65] via 192.168.10.10, 11:19:33, Serial0/0
O 192.168.4.0/24 [110/2] via 192.168.10.6, 00:44:24, FastEthernet2/0
[110/2] via 192.168.10.2, 00:44:24, FastEthernet1/0
O 192.168.5.0/24 [110/2] via 192.168.10.6, 00:44:24, FastEthernet2/0
[110/2] via 192.168.10.2, 00:44:24, FastEthernet1/0
O 192.168.6.0/24 [110/2] via 192.168.10.6, 00:44:24, FastEthernet2/0
[110/2] via 192.168.10.2, 00:44:24, FastEthernet1/0
O 192.168.1.0/24 [110/2] via 192.168.10.6, 00:44:24, FastEthernet2/0
[110/2] via 192.168.10.2, 00:44:24, FastEthernet1/0
S* 0.0.0.0 via 0 [1Acer 0] 202.0.0.2
R4#show ip route
192.168.10.0/24 is variably subnetted, 4 subnets, 2 masks
O IA 192.168.10.0/30 [110/65] via 192.168.10.9, 00:48:10, Serial0/0
O IA 192.168.10.4/30 [110/65] via 192.168.10.9, 13:45:10, Serial0/0
O 192.168.10.8/30 [110/128] via 192.168.10.9, 13:45:10, Serial0/0
7.0.0.0/32 is subnetted, 1 subnets
O IA 7.7.7.7 [110/11176] via 192.168.10.9, 11:22:27, Serial0/0
O IA 192.168.4.0/24 [110/66] via 192.168.10.9, 01:31:50, Serial0/0
O IA 192.168.5.0/24 [110/66] via 192.168.10.9, 01:31:40, Serial0/0
O IA 192.168.6.0/24 [110/66] via 192.168.10.9, 01:31:17, Serial0/0
O IA 192.168.1.0/24 [110/66] via 192.168.10.9, 01:32:05, Serial0/0
O*E2 0.0.0.0/0 [110/1] via 192.168.10.9, 00:00:18, Serial0/0
R2#show ip route
C 201.0.0.0/24 is directly connected, Serial0/0
C 202.0.0.0/24 is directly connected, Serial0/1
R1#show ip route
C 201.0.0.0/24 is directly connected, Serial0/0
7.0.0.0/24 is subnetted, 1 subnets
C 7.7.7.0 is directly connected, Loopback0
S* 0.0.0.0 via 0 [1Acer 0] 201.0.0.2
Sw1-3 (config) # ip route 0.0.0.0 0.0.0.0 192.168.10.1 150 prevent route entries from tampering, add one more default route entry, and use this one if the previous route entry fails. You can't see that goal in OK.
Sw2-3 (config) # ip route 0.0.0.0 0.0.0.0 192.168.10.5 150 prevent route entries from tampering
R4 (config) # ip route 0.0.0.0 0.0.0.0 192.168.10.9 150 prevent route entries from tampering
10.HSRP hot backup routing protocol configuration:
Sw1-3 (config) # in vlan 2
Sw1-3 (config-if) # no ip redirects turns off port redirection.
Sw1-3 (config-if) # standby 50 ip 192.168.1.254 configure HSRP members
Sw1-3 (config-if) # standby 50 priority 150 priority is 150
Sw1-3 (config-if) # standby 50 preempt configuration preemptive
Sw1-3 (config) # in vlan 3
Sw1-3 (config-if) # standby 47 ip 192.168.4.254 configure HSRP members
Sw1-3 (config-if) # standby47 priority 200Priority200
Sw1-3 (config-if) # no ip redirects turns off port redirection.
Sw1-3 (config-if) # standby 47 preempt configuration preemptive
Sw1-3 (config-if) # standby 47 track f0amp 0100 configure port tracking
Sw1-3 (config) # in vlan 4
Ssw1-3 (config-if) # standby 51 ip 192.168.5.254
Sw1-3 (config-if) # standby 51 priority 150
Sw1-3 (config-if) # standby 51 preempt
Sw1-3 (config-if) # no ip redirects
Sw1-3 (config) # in vlan 5
Sw1-3 (config-if) # no ip redirects
Sw1-3 (config-if) # standby 48 ip 192.168.6.254
Sw1-3 (config-if) # standby48 priority 200
Sw1-3 (config-if) # standby48 preempt
Sw1-3 (config-if) # standby 48 track f0amp 0 100
Sw2-3 (config) # in vlan 3
Sw2-3 (config-if) # standby 47ip 192.168.4.254
Sw2-3 (config-if) # no ip redirects
Sw2-3 (config-if) # standby 47 priority 150
Sw2-3 (config-if) # standby 47 preempt
Sw2-3 (config) # in vlan 2
Sw2-3 (config-if) # no ip redirects
Sw2-3 (config-if) # standby 50 ip 192.168.1.254
Sw2-3 (config-if) # standby 50 priority 200
Sw2-3 (config-if) # standby50 preempt
Sw1-3 (config-if) # standby 50 track f0amp 0 100
Sw2-3 (config) # in vlan 4
Sw2-3 (config-if) # no ip redirects
Sw2-3 (config-if) # standby 51 ip 192.168.5.254
Sw2-3 (config-if) # standb 51 priority 200
Sw2-3 (config-if) # standby 51 preempt
Sw1-3 (config-if) # standby 51 track f0amp 0 100
Sw2-3 (config) # in vlan 5
Sw2-3 (config-if) # no ip redirects
Sw2-3 (config-if) # standby 48ip 192.168.6.254
Sw2-3 (config-if) # standb 48 priority 150
Sw2-3 (config-if) # standb 48 preempt
Sw1-3#debug standby to view configuration results (method 1)
Sw1-configuration show standby br to view configuration results (method 2)
Interface Grp Prio P State Active Standby Virtual IP
Vl2 50 150 P Standby 192.168.1.2 local 192.168.1.254
Vl3 47 200 P Active local 192.168.4.2 192.168.4.254
Vl4 51 150 P Standby 192.168.5.2 local 192.168.5.254
Vl5 48 200 P Active local 192.168.6.2 192.168.6.254
Sw2-3#show standby br
Interface Grp Prio P State Active Standby Virtual IP
Vl2 50 200 P Active local 192.168.1.1 192.168.1.254
Vl3 47 150 P Standby 192.168.4.1 local 192.168.4.254
Vl4 51 200 P Active local 192.168.5.1 192.168.5.254
Vl5 48 150 P Standby 192.168.6.1 local 192.168.6.254
Sw1-3 (config) # in f0Let0
Sw1-3 (config-if) # sh shuts down the tracking interface. Test the conversion between master and standby
Sw1-3 (config) # do show stan br
Interface Grp Prio P State Active Standby Virtual IP
Vl2 50 150 P Standby 192.168.1.2 local 192.168.1.254
Vl3 47 100 P Standby 192.168.4.2 local 192.168.4.254
Vl4 51 150 P Standby 192.168.5.2 local 192.168.5.254
Vl5 48 100 P Standby 192.168.6.2 local 192.168.6.254
Sw2-3#show standby br
| |
Interface Grp Prio P State Active Standby Virtual IP
Vl2 50 200 P Active local 192.168.1.1 192.168.1.254
Vl3 47 150 P Active local 192.168.4.1 192.168.4.254
Vl4 51 200 P Active local 192.168.5.1 192.168.5.254
Vl5 48 150 P Active local 192.168.6.1 192.168.6.254
Sw1-3 (config) # in f0Let0
Sw1-3 (config-if) # no sh secondary boot tracking port
Sw1-configuration show standby br to view configuration results
Interface Grp Prio P State Active Standby Virtual IP
Vl2 50 150 P Standby 192.168.1.2 local 192.168.1.254
Vl3 47 200 P Active local 192.168.4.2 192.168.4.254
Vl4 51 150 P Standby 192.168.5.2 local 192.168.5.254
Vl5 48 200 P Active local 192.168.6.2 192.168.6.254
Sw2-3#show standby br
Interface Grp Prio P State Active Standby Virtual IP
Vl2 50 200 P Active local 192.168.1.1 192.168.1.254
Vl3 47 150 P Standby 192.168.4.1 local 192.168.4.254
Vl4 51 200 P Active local 192.168.5.1 192.168.5.254
Vl5 48 150 P Standby 192.168.6.1 local 192.168.6.254
The test succeeded:
12.NAT configuration (port multiplexing)
Method 1:
R3 (config) # access-list 1 permit 192.168.0.0 0.0.255.255 set the traffic of interest
R3 (config) # route-map fornat permit 10 build routing policy priority 10
R3 (config-route-map) # match ip add 1 grabs the traffic from listing 1.
R3 (config) # ip nat inside source route-map fornat interface s0ram 1 overload NAT port multiplexing conversion
Method 2:
R3 (config) # access-list 1 permit 192.168.0.0 0.0.255.255
R3 (config) # ip nat inside source list 1 interface s0amp 1 overload
R3 (config) # in s0can1
R3 (config-if) # ip nat outside
R3 (config) # in s0Let0
R3 (config-if) # ip nat inside
R3 (config) # in f1max 0
R3 (config-if) # ip nat inside
R3 (config) # in f2ap0
R3 (config-if) # ip nat inside
Sw2-3#ping 201.0.0.1 source 192.168.1.2 Test NAT configuration results
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 201.0.0.1, timeout is 2 seconds:
Packet sent with a source address of 192.168.1.2
!
Success rate is 100 percent (5amp 5), round-trip min/avg/max = 108 Universe 1932 ms
R3#show ip nat translations NAT conversion analysis
Pro Inside global Inside local Outside local Outside global
Icmp 202.0.0.1:4 192.168.1.2:4 201.0.0.1:4 201.0.0.1:4
Sw1-3#ping 201.0.0.1 source 192.168.1.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 201.0.0.1, timeout is 2 seconds:
Packet sent with a source address of 192.168.1.1
!
Success rate is 100 percent (5amp 5), round-trip min/avg/max = 156 Universe 200 ms
R3#show ip nat translations
Pro Inside global Inside local Outside local Outside global
Icmp 202.0.0.1:19 192.168.1.1:19 201.0.0.1:19 201.0.0.1:19
R4#ping 201.0.0.1 source 192.168.10.10
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 201.0.0.1, timeout is 2 seconds:
Packet sent with a source address of 192.168.10.10
!
Success rate is 100 percent (5Compact 5), round-trip min/avg/max = 152 Universe 208Accord 284 ms
R3#show ip nat translations
Pro Inside global Inside local Outside local Outside global
Icmp 202.0.0.1:17 192.168.10.10:17 201.0.0.1:17 201.0.0.1:17
13. × × site-to-site configuration:
R3 (config) # crypto isakmp enable starts IKE negotiation
R3 (config) # crypto isakmp policy 10 establishes the IKE negotiation policy numbered "10"
R3 (config-isakmp) # hash md5 configure password authentication as "md5"
R3 (config-isakmp) # authentication pre-share configures the router to use a pre-shared key.
R3 (config-isakmp) # encryption des configures the algorithm used for encryption. "DES
R3 (config) # crypto isakmp key 0 qqq111, address 201.0.0.1 configure the password and peer IP address on the opposite side of the secure connection.
R3 (config) # crypto ipsec transform-set for*** esp-des esp-md5-hmac (configuring IPSec to use both AH and ESP protocols, using the transport mode name "for***", where AH authentication uses MD5 algorithm, ESP encryption uses DES algorithm. (AH can only be verified, not encrypted, while ESP can be encrypted and verified, but its function is worse than AH.)
R3 (cfg-crypto-trans) # exit
R3 (config) # crypto ipsec profile site2site specifies that sitetosit negotiate with the password keychain configured above
R3 (ipsec-profile) # set transform-set for*** specifies the use of transport mode
R3 (ipsec-profile) # exit
R3 (config) # in tunnel 0 enters virtual tunnel 0
R3 (config-if) # ip add 1.1.1.1 255.255.255.0 configure the IP address.
R3 (config-if) # tunnel source s0can1 virtual tunnel original interface
R3 (config-if) # tunnel destination 201.0.0.1 virtual tunnel destination address.
R3 (config-if) # tunnel protection ipsec profile site2site this tunnel applies to "site2site"
R3 (config-if) # no sh
R3 (config) # router ospf 100 declares this address.
R3 (config-router) # network 1.1.1.1 0.0.0.0 area 2
R3#show ip in br
Tunnel0 1.1.1.1 YES manual up up
R1 (config) # crypto isakmp enable
R1 (config) # crypto isakmp policy 10
R1 (config-isakmp) # hash md5
R1 (config-isakmp) # authentication pre-share
R1 (config-isakmp) # encryption des
R1 (config) # crypto isakmp key 0 qqq111, address 202.0.0.1
R1 (config) # crypto ipsec transform-set for*** esp-des esp-md5-hmac
R1 (cfg-crypto-trans) # exit
R1 (config) # crypto ipsec profile site2site
R1 (ipsec-profile) # set transform-set for***
R1 (ipsec-profile) # exit
R1 (config) # in tunnel 0
R1 (config-if) # ip add 1.1.1.2 255.255.255.0
R1 (config-if) # tunnel source s0Let0
R1 (config-if) # tunnel destination 202.0.0.1
R1 (config-if) # tunnel protection ipsec profile site2site
R1 (config-if) # no hs
R1 (config) # router ospf 100
R1 (config-router) # network 1.1.1.2 0.0.0.0 area 2
R1 (config-router) # exit
R1#show ip route tests learned routes
O IA 192.168.10.0 via 30 [110Compact 11112] 1.1.1.1, 00:00:11, routing entries learned by Tunnel0 through virtual tunnel
O IA 192.168.10.0/24 [110/11239] via 1.1.1.1, 00:00:11, Tunnel0
O IA 192.168.10.4/30 [110/11112] via 1.1.1.1, 00:00:11, Tunnel0
O IA 192.168.10.8/30 [110/11175] via 1.1.1.1, 00:00:11, Tunnel0
6.0.0.0/32 is subnetted, 1 subnets
O IA 6.6.6.6 [110/11176] via 1.1.1.1, 00:00:11, Tunnel0
7.0.0.0/24 is subnetted, 1 subnets
C 7.7.7.0 is directly connected, Loopback0
O IA 192.168.4.0/24 [110/11113] via 1.1.1.1, 01:43:30, Tunnel0
O IA 192.168.5.0/24 [110/11113] via 1.1.1.1, 01:43:21, Tunnel0
O IA 192.168.6.0/24 [110/11113] via 1.1.1.1, 01:42:58, Tunnel0
O IA 192.168.1.0/24 [110/11113] via 1.1.1.1, 01:43:46, Tunnel0
S* 0.0.0.0 via 0 [1Acer 0] 201.0.0.2
R1#show crypto engine connections active displays active data information
ID Interface IP-Address State Algorithm Encrypt Decryp
1 Tunnel0 1.1.1.2 set HMAC_MD5+DES_56_CB 0 0
2001 Tunnel0 201.0.0.1 set DES+MD5 0 46
2002 Tunnel0 201.0.0.1 set DES+MD5 42 0
The above indicates that the configuration is successful.
R3#show ip route
7.0.0.0/32 is subnetted, 1 subnets
O 7.7.7.7 [110/11112] via 1.1.1.2, 06:24:09, Tunnel0
Sw1-3#ping 7.7.7.7 source 192.168.1.1 Test whether the configuration is successful or not
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 7.7.7.7, timeout is 2 seconds:
Packet sent with a source address of 192.168.1.1
!
Success rate is 100 percent (5amp 5), round-trip min/avg/max = 212 Universe 402 + 584 ms
R4#ping 7.7.7.7 source 6.6.6.6
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 7.7.7.7, timeout is 2 seconds:
Packet sent with a source address of 6.6.6.6
!
Success rate is 100 percent (5amp 5), round-trip min/avg/max = 208 Universe 340 ms 448
R3#show ip nat translations views the list of NAT transformation analysis
R3#
Note: the above situation shows that × × is successful, and there is no content in the NAT conversion analysis list. That is because the ping package is connected through a virtual tunnel instead of NAT.
Sw1-3#ping 201.0.0.1 source 192.168.1.1 after the test configuration × × ×, the internal network accesses the public network
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 201.0.0.1, timeout is 2 seconds:
Packet sent with a source address of 192.168.1.1
!
Success rate is 100 percent (5 Success rate is 5), round-trip min/avg/max = 104 Universe 276 Universe 400 ms
R3#show ip nat translations
Pro Inside global Inside local Outside local Outside global
Icmp 202.0.0.1:21 192.168.1.1:21 201.0.0.1:21 201.0.0.1:21
Note: the above tests show that after the successful configuration of × ×, it does not affect each other with NAT, and the site communicates through a secure virtual tunnel, while the internal network accesses the external Internet and is converted by NAT to achieve a secure and efficient network structure.
The above configuration has another feature: when there is a new network segment in the internal network of the two sites, you only need to announce the new network segment, and the peer will quickly learn the routing entry, thus ensuring the connectivity of all network segments in the internal network of the two sites. This is as follows: after configuring × ×, the network connected to R1 has created a new network segment and is now enabling it to communicate securely with the peer internal network. The configuration is as follows:
R1 (config) # in lo1 configuration
R1 (config-if) # ip add 2.2.2.2 255.255.255.0
R1 (config-if) # no sh
R1 (config-if) # exit
R1 (config) # router ospf 100announcement
R1 (config-router) # network 2.2.2.2 0.0.0.0 area 2
Sw1-check show ip route view
2.0.0.0/32 is subnetted, 1 subnets
O IA 2.2.2.2 [110/11113] via 192.168.10.1, 06:56:05, FastEthernet0/0
Sw1-3#ping 2.2.2.2 source 192.168.1.1 Test
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2.2.2.2, timeout is 2 seconds:
Packet sent with a source address of 192.168.2.254
! Success
Success rate is 100 percent (5amp 5), round-trip min/avg/max = 332 Universe 388 + 496 ms
Welcome to subscribe "Shulou Technology Information " to get latest news, interesting things and hot topics in the IT industry, and controls the hottest and latest Internet news, technology news and IT industry trends.
Views: 0
*The comments in the above article only represent the author's personal views and do not represent the views and positions of this website. If you have more insights, please feel free to contribute and share.
Continue with the installation of the previous hadoop.First, install zookooper1. Decompress zookoope
"Every 5-10 years, there's a rare product, a really special, very unusual product that's the most un
© 2024 shulou.com SLNews company. All rights reserved.